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Abstract

In typical diagnostic applications, intense ion beams are
intercepted by a conducting plate with slits to measure
beam phase-space projections. This results in the trans-
verse space-charge field near the plate being shorted out,
rendering simple envelope models with constant space-
charge strength inaccurate. Here we develop a simple cor-
rected envelope model based on analytical calculations to
account for this effect on the space-charge term of the enve-
lope equations, enabling more accurate comparisons with
experiment. Results are verified with 3D self-consistent
PIC simulations.

INTRODUCTION

Low-order models of intense ion beams often employ
the rms envelope equations to describe the self-consistent
evolution of the beam edge in response to applied focus-
ing, space-charge, and thermal defocusing forces. 1 Such
envelope models are typically solved with constant beam
emittances (phase-space area) and perveance (space-charge
strength) to extrapolate experimental measurements and
understand the evolution of the beam envelope away from
diagnostic stations. Developing a simple model to compen-
sate for changes in the envelope induced by plates used in
diagnostics is important to enable more precise estimates of
the beam envelope without the need for large simulations.
Elimination of systematic errors in this process improves
beam envelope control and matching — important to limit
the generation of beam halo and related particle losses.

ENVELOPE MODEL

Consider a long-pulse, unbunched beam with particles
of charge q and mass m moving with axial velocity βbc
and relativistic factor γb = 1/

√
1 − β2

b . We take the trans-
verse orbit x(s) of a beam particle to satisfy the paraxial
(axial energy variation of particles neglected) equation of
motion1

x′′ + κxx +
q

mγ3
b β2

b c2

∂φ

∂x
= 0. (1)

Here, s is the axial coordinate of a beam slice, κx(s) is
the linear applied focusing functions of the lattice, and the
electrostatic potential φ is related to the density of beam
particles n by the 3D Poisson equation ∇2φ = −qn/ε0
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subject to φ = const on conducting boundaries. An analo-
gous equation applies to the y-orbit y(s).

Denote a transverse statistical average in a axial slice of
beam particles by 〈· · · 〉⊥. RMS measures of the transverse
edge radii of the beam envelope are

rx(s) = 2
√
〈x2〉⊥ and ry(s) = 2

√
〈y2〉⊥. (2)

Differentiating the equation for rx and employing Eq. (1)
yields the envelope equation

r′′x + κxrx − 2Q

rx + ry
Fx − ε2x

r3
x

= 0. (3)

Here, Q = qλ/(2πε0mc2γ3
b β2

b ) = const is the dimension-
less perveance (λ = const is the line-charge density of the
beam slice),

Fx = −4πε0
λ

(
rx + ry

rx

)〈
x

∂φ

∂x

〉

⊥
, (4)

is a form-factor, and

εx = 4
[〈x2〉⊥〈x′2〉⊥ − 〈xx′〉2⊥

]1/2
(5)

is the rms emittance. Analogous equations to (3)–(5) ap-
ply in y. For the special case of 2D (∂/∂z = 0) transverse
self-fields with constant charge density on nested ellipti-
cal surfaces with principal axis radii αrx and αry aligned
with the x- and y-coordinate axes, Sacherer2showed that
Fx = Fy = 1. The Vlasov model self-consistent KV dis-
tribution satisfies this condition for a uniform density ellip-
tical beam with εx = const and εy = const. The envelope
equations (3) are also often applied with Fx = Fy = 1 in
an rms equivalent beam sense.1,2

SELF-FIELD SOLUTION

We model a beam near a conducting plate as impinging
on a perfectly conducting plane at z = 0 in free-space from
z < 0. Then the method of images can be used to solve for
φ in the beam region with z < 0 as

φ(x) =
q

4πε0

∫

beam
d3x̃

[
n(x̃)

|x − x̃| −
n(x̃I)

|x − x̃I |
]

, (6)

where x = xx̂ + yŷ + zẑ and xI = xx̂ + yŷ − zẑ are
the direct and image coordinates, and we have dropped an
arbitrary additive constant. We further idealize by assum-
ing that the beam is normally incident with uniform density
and a constant, round edge-radius (rx = ry = R = const).
Then the beam density is

n(r, z) =
λ

πqR2
Θ(R − r)Θ(−z), (7)



where Θ(x) is the Heaviside step-function [Θ(x) = 0 for
x < 0 and Θ(x) = 1 for x > 0]. In (r, θ, z) cylindrical
coordinates, 1/ |x− x̃| can be expanded as3

1

|x − x̃| =
∞∑

m=−∞

∫ ∞

0

dk eim(θ−θ̃)Jm(kr)Jm(kr̃)ek(z>−z<),

where z> and z< denote the greater and lesser of z and z̃,
and Jm(x) is an mth-order ordinary Bessel function. Using
this expansion and Eq. (7) in Eq. (6) gives in the beam

φ(r, z) =
λ

πε0

∫ ∞

0

dw

w2

(
1 − e−w|z|/R

)
J0

(
w

r

R

)
J1(w),

and the corresponding radial and axial electric field com-
ponents Er = −∂φ/∂r and Ez −−∂φ/∂z are

Er(r, z) =
λ

πε0R

∫ ∞

0

dw

w

(
1 − e−w|z|/R

)
J1

(
w

r

R

)
J1(w),

Ez(r, z) =
λ

πε0R

∫ ∞

0

dw

w
e−w|z|/RJ0

(
w

r

R

)
J1(w). (8)

These field components are plotted in Fig. 1. Note that
the radial field remains nearly linear within the beam (r <
R) until z is a fraction of a beam radius from the plate.
The axial field increases near the plate because the negative
image beam is closer.

FIG. 1: Self-field components near a conducting plate.

Equations (8) are checked by calculating the limits

lim
z→−∞Er(r, z) = λ

πε0R

∫ ∞
0

dw
w J1

(
w r

R

)
J1(w)

= λ
2πε0R ·

{
r
R , 0 ≤ r

R ≤ 1,
1

r/R , 1 ≤ r
R ,

Ez(r = 0, z) = λ
πε0R

∫ ∞
0

dw
w e−w|z|/RJ1(w)

= λ
πε0R2

(√
R2 − z2 − |z|) . (9)

The radial field limit is the usual expression for a uniform
density beam of radius R. The axial field limit shows that
φ(r = 0, z) logarithmically diverges in |z|. This diver-
gence is related to the 2D nature of the problem and shows
that this model is inadequate for direct use in estimates of
axial acceleration induced by the plate. Regularization of
this divergence to model image induced self-field accelera-
tions can be carried out by adding a grounded, cylindrical
pipe to cutoff the self-field interaction range (as would be
present in the laboratory).

CORRECTED AXISYMMETRIC
ENVELOPE EQUATION

We apply the self-field solution above to motivate a sim-
ple, corrected envelope equation for an axisymmetric beam
with a normally incident centroid impinging on a conduct-
ing plate from z < 0. We take κx(s) = κy(s) ≡ κ(s),
εx = εy ≡ ε, and rx(s) = ry(s) ≡ R(s). The form-
factors (4) are calculated from Eq. (8) as

Fx = Fy = −4πε0
λ

〈
r
∂φ

∂r

〉

⊥
= F

( |z|
R

)
(10)

where,

F (ζ) ≡ 8
∫ ∞

0

dw

w2

(
1 − e−wζ

)
J1(w)J2(w). (11)

We apply this form-factor to a beam with evolving radius
rx(s) = ry(s) = R(s) to obtain a corrected axisymmetric
beam envelope equation

R′′ + κ R − Q

R
F

( |s − sp|
R

)
− ε2

R3
= 0. (12)

Here, |s − sp| is the axial distance of the beam slice from
the conducting plate.

An approximate analytical expression for the form-
factor (11) can be calculated using the on-axis field Ez(r =
0, z) in Eq. (9) and the Poisson equation to derive a power
series solution for Er valid within the beam. Truncating
this series to radial terms of order r3 and lower yields

F (ζ) � ζ
√

1 + ζ2

[
1 +

1
4

1
1 + ζ2

(
1 − ζ2

1 + ζ2

)]
. (13)

The “exact” [Eq. (11)] and approximate [Eq. (13)] form-
factors are plotted versus ζ in Fig. 2. For large ζ note
that F � 1 and we obtain the usual envelope equations,
whereas F rapidly decreases to zero for ζ corresponding to
several beam radii from the plate where the radial self-field
is shorted out by the conducting plate, thereby decreasing
the strength of the perveance term in the envelope equation.

FIG. 2: Form factor and approximate form factor.

A numerical solution to the corrected envelope equa-
tion (12) is plotted in Fig. 3 together with the uncorrected
solution for F = 1. Parameters correspond to typical di-
agnostic situations in the High Current Experiment (HCX)
for Heavy-Ion Fusion (HIF),4where a 1–1.8 MeV, 200–700
mA, K+ ion-beam with εx ∼ εy ∼ 50–100 mm-mrad is



Perveance Emittance Initial conditions Final Conditions (R in mm, R′ in mrad)

Q ε R(0) R′(0) F = 1 F = F (|s − sp|/R) 3D PIC Simulation

(mm-mrad) (cm) (mrad) R(sp) R′(sp) R(sp) R′(sp) R(sp) R′(sp)

8. · 10−4 100. 1. 0. 1.0220 6.2444 1.0211 5.5765 1.0223 5.5508

8. · 10−4 100. 1. 20. 1.1608 25.7757 1.1600 25.1224 1.1616 25.1150

8. · 10−4 100. 1. 40. 1.2998 45.3919 1.2990 44.7511 1.3012 44.7790

8. · 10−4 100. 1. −20. 0.8833 −13.1644 0.8825 −13.8492 0.8836 −13.8960

8. · 10−4 100. 1. −40. 0.7450 −32.3841 0.7442 −33.0866 0.7448 −33.1350

10. · 10−4 50. 1. 0. 1.0250 7.1132 1.0212 5.5765 1.0178 5.2704

10. · 10−4 50. 1. 20. 1.1639 26.6470 1.1600 25.1224 1.1567 24.8105

10. · 10−4 50. 1. −20. 0.8863 −12.3204 0.8825 −13.8492 0.8791 −14.1640

TABLE I: Initial and final envelope radii and angles for uncorrected and corrected envelope models and self-consistent PIC simulations.

focused in a FODO quadrupole lattice with period 60 cm
and an undepressed particle phase advance of σ0 = 60◦–
90◦. Free-drifts to diagnostic stations are ∼ 7 cm, av-
erage matched beam radii are ∼ 1 cm, and maximum
matched beam envelope angles are ∼ 50 mrad. Final val-
ues of envelope solutions for a range of HCX-like param-
eters are contrasted in Table I for form-factors F = 1 and
F (|s − sp| /R). The most significant correction for these
parameters is in the envelope angle at the plate R ′(sp) with
typical experimentally resolvable errors ∼ 1 mrad occur-
ring. Envelope coordinate errors R(sp) are not resolvable.

FIG. 3: Envelope for a drift solution into a plate.

PIC SIMULATIONS

Self-consistent 3D electrostatic PIC simulations were
carried out to check the corrected envelope model predic-
tions presented above for deviations due to: self-field non-
linearities, emittance growth, variation in the beam enve-
lope near the plate [R(s) 	= const in beam self-fields], en-
ergy deviations due to the beam seeing it’s image in the
plate, and elliptical beam effects due to rx 	= ry (simulated
but not presented in this article). The WARP code devel-
oped by LLNL for simulation of intense beams for HIF
applications was employed. This code is modular with an
extensive hierarchy of models.5 We carried out simulations
with: a 10 cm radial beam pipe with φ = 0, boundary con-
ditions on the left and right axial bounds with Ez = 0 (at
injection) and φ = 0 (at plate), and steady-state mid-pulse
solutions iterated from uniform, semi-Gaussian beam in-
jection conditions on the left axial boundary. Results of
these simulations are included in Table I and agree well
with corrected envelope model results for typical ranges of
Q in the HCX experiment.4 The simulations showed neg-

ligible rms emittance growth (∼ 1% and less) and verified
that the nonlinear space-charge fields within a fraction of
a beam radius of the plate have insufficient time to cause
deviations from the simple envelope model.

CONCLUSIONS

Generalized transverse envelope equations were derived
to improve modeling of intense ion-beams impinging at
normal incidence on a conducting plate. These equations
were analyzed in an axisymmetric limit using an analytical
solution form-factor to account for the plate shorting-out
the space-charge field near the plate. Model results com-
pared well with self-consistent 3D PIC simulations. Con-
trasting results with standard (fixed perveance term) enve-
lope equations for usual parameters shows that small, but
significant angle errors result if this effect is not corrected.
Comparisons of experimental results to envelope models
were improved by incorporating this systematic effect in
the analysis of the HCX experiment. In this work, we
employed heuristic form-factors to model the experimen-
tal beam with elliptical cross-section:

Fx = Fy = F

(
|s − sp|√
rx(s)ry(s)

)

. (14)

Simulations verify that this replacement recovers most of
the correction for elliptical beams without extreme elliptic-
ity (rx/ry ∼ 3 and less) and in continuing studies we are
developing improved approximations.
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